

Petroleum Sites: What More Should We Do?

Presented By Jennifer Segura, P.E.

Naval Facilities Engineering Command Engineering and Expeditionary Warfare Center (NAVFAC EXWC)

Presentation Overview

- Introduction/Objective
- Overview of 3 tools and methods
 - Carbon Traps
 - Transmissivity
 - API's TPH-CWG Method
- Review Case Studies at Navy Sites (JPHC, Fallon)
- Summary

Objective

- Discuss alternatives methods to characterize LNAPL remaining at petroleum impacted sites
- Provide an overview of each tool and what information each provides
- Discuss the how this information can be leveraged into overall site management strategies
 - Residual risk remaining at a site
 - Transition from active to passive management
 - Potential for RC Acceleration

Let's Kahoot!

- How many people are running active recovery systems?
 - Yes
 - No

Has LNAPL been recovered to max extent?

Supplemental Lines of Evidence

Lines of Evidence	Data to Support Line of Evidence
No Risk to Receptors	HHRA and ECO Risk AssessmentFingerprint LNAPLDistance of plume from receptor
NSZD and natural attenuation documented	- Carbon Trap Analysis
Areal Extent of Mobile LNAPL Footprint – Stable or Decreasing	Historic trend analysis in presence of FPLNAPL footprint maps
Asymptotic Recovery	- Historic Free Product recovery trend analysis
Remaining product has low mobility/ recoverability	Transmissivity TestFingerprint LNAPLViscosity test

Natural Source Zone Depletion

- Rate of biodegradation in vadose zone
- Four ways to measure:
 - Carbon Traps
 - Dynamic Closed Chamber
 - Gradient Method
 - Temperature-Based Method
- Reported in gal/acre/year
- Can be on the order of 100s to 1000s of gallons per acre per year

Let's Kahoot!

- How many people have heard of carbon traps or other CO2 flux measuring methods?
 - Yes, never used though.
 - Yes, deployed them at one of my sites
 - No, never heard of them

CARBON TRAPS

- Measures CO₂ flux from vadose zone
- Determine rates of NSZD
- Correction for background using ¹⁴C analysis
- Easy to deploy
- Typical deployment is 2 weeks
- 4" or 8" receptors available

Permanent concrete receptor

Mobile, Residual and Dissolved Phase Plumes How does that change overtime?

Let's Kahoot!

- Have you evaluated LNAPL transmissivity at your site?
 - No, what's that?
 - Yes, conducted a bail down test
 - Yes, using historical recovery data

LNAPL Transmissivity

- Volume of LNAPL through a unit of width of aquifer per unit time per unit drawdown
- Line of evidence to predict LNAPL recoverability
 - Difficult to recover if transmissivity is <0.1-0.8 ft²/day
- Dependent on:
 - Soil type and properties
 - e.g. porosity, conductivity
 - Chemical and physical properties of the LNAPL
 - e.g. density, viscosity, composition
 - LNAPL saturation in the formation
 - Thickness of the mobile NAPL

LNAPL Transmissivity

- Calculated value
- Units = $length^2/time$
- Rates determined by:
 - Conducting a bail down test
 - Using historical recovery data
 - Manual skimming method

$$T = K * b = l^2/t$$

T = transmissivity

K = conductivity

b = thickness

NAVFAC, 2015

Let's Kahoot!

- Have you fingerprinted LNAPL and soil/GW samples?
 - Yes, carbon fractionation only
 - Yes, carbon fractionation for aliphatic and aromatic
 - No, never

American Petroleum Institute's

- Method developed to calculate the risk associated with petroleum hydrocarbon mixtures
- Fractionation analysis distinguishes by
 - Carbon number, and
 - Compound Classes (Aliphatic vs Aromatic)
- Analysis available for:
 - Groundwater samples
 - Soil Samples
 - LNAPL Free Product samples

Case Study – NAS Fallon

ESTCP Project ER-201582

NAS Fallon Northern Operable Unit. Source: NAVFAC SW, 2014.

Site Description

- ❖ Shallow groundwater (~8-10 ft.)
- Up to 85,000 gallons of fuel or fuel and water mixture released
- Fuel removal activities since the early 1990s
- Area of product thickness has decreased significantly since 2008

Case Study – NAS Fallon

ESTCP Project ER-201582

Case Study – NAS Fallon

ESTCP Project ER-201582

NAVFAC EXWC field engineer deploying the carbon traps.

NAVFAC EXWC ER-201582.

Deployed carbon trap. NAVFAC EXWC ER-201582.

Apparent Free Product Thickness – 2008. Source: NAVFAC SW, 2014.

Preliminary Data

Jackson Park Housing Complex – OU1 Site Layout

JPHC Case Study

Carbon Trap Locations

JPHC Case Study

Deployed Carbon Traps

Permanent concrete receptor

NAVFAC NW

Preliminary Data -

NAPL Loss Rates – gallons per acre per year

NSZD – Other Sites

NSZD Study	Site-Wide NSZD Rate (gallons per acre per year)
Six Refinery Terminal Sites (McCoy, 2012)	2,100 – 7,700
1979 Crude Oil Spill (Sihota et al., 2011)	1,600
Refinery/Terminal Sites in Los Angeles (LA LNAPL Wkgrp, 2015)	1,100 – 1,700
Five Fuel/Diesel/Gasoline Sites (Piontek et al, 2014)	300 - 3,100
Eleven Diverse Petroleum Sites (Palaia, 2016)	300 – 5,600

New Developments in LNAPL Site Management Fact Sheet, NAVFAC 2016

Knowledge Check

- 1. T/F Carbon traps measure total CO₂ flux and can be used to determine NSZD rates.
- 2. Transmissivity can be calculated by:
 - a) Conducting a bail down test
 - b) Using historical recovery data
 - c) Manual skimming method
 - d) All of the above
- 3. T/F API's TPH-CWG Method uses bulk TPH concentrations to assess risk from residual LNAPL.

Summary

- Many advances in tools to help refine site CSM in order to make informed site management decisions
- NSZD measurements can be made using tools such as the carbon dioxide trap to estimate biodegradation rates
- Transmissivity tells us information regarding the recoverability of product at our sites
- TPH fractionation analysis can help us evaluate the risk of residual product at our sites
- All of these tools help support lines of evidence for Response Complete (RC) or transition to more passive recovery methods

Contacts and Questions

Points of Contact

NAVFAC EXWC: Jennifer Segura, P.E.

jennifer.segura@navy.mil / 202-985-9336

NAVFAC EXWC: Arun Gavaskar, P.E.

arun.gavaskar@navy.mil / 805-982-1661

Questions?

Supplemental Information

List Helpful Resources

- New Developments in LNAPL Site Management https://www.navfac.navy.mil/content/dam/navfac/Spe cialty%20Centers/Engineering%20and%20Expeditio nary%20Warfare%20Center/Environmental/Restorati on/er_pdfs/l/navfacexwc-ev-fs-1709-newdev-lnapl-201704.pdf
- Recent Developments in Petroleum Site
 Management (OER2 Webinar October 19th, 2016)
 https://www.navfac.navy.mil/navfac_worldwide/specia
 lty_centers/exwc/products_and_services/ev/erb/oer2.
 html#past_topics
- Support Monitored Natural Attenuation and Risk Based Closure (RITS 2017 Pending)

 https://www.navfac.navy.mil/navfac_worldwide/specia
 lty_centers/exwc/products_and_services/ev/erb/rits/p
 astrits.html

LNAPL Site Management – How to use Tools to

Backup Material

Jackson Park Housing Complex – OU1 Cross-Sectional View

